
? Spectre - basic tutorial Exported - 2024-04-15

https://wiki.centenary.org.au/x/5ysMCQ – Page 1 of 11

•
•

•
•

1. Setup tutorial script and dataset

Open R Studio

To interact with the Spectre package in R, we will use RStudio.

Load Spectre package

To use Spectre, we first need to load the 'Spectre' package, as well as other relevant packages. To do this, follow the
instructions below.

Copy the code on the right into your R script (MyScript.R). Make sure to SAVE.
Run each line (one by one) by clicking on the line or highlighting the text, and press CMD + return (Mac) or CTRL + Enter
(Windows).
As above, nothing is returned if they are loaded successfully, or an error message is returned if they are not.
If you have installed Spectre, but the package won't load, then you can visit our installation troubleshooting page.

Tips

If you have not installed R or RStudio, or are not familiar with using R, please see the 'getting started' section on the
home page.



https://wiki.centenary.org.au/x/5ysMCQ
https://wiki.centenary.org.au/x/MoBfCQ
https://wiki.centenary.org.au/x/9CsMCQ
https://wiki.centenary.org.au/pages/viewpage.action?pageId=146080606#SpectreRpackageHomePage-Installationandgettingstarted

? Spectre - basic tutorial Exported - 2024-04-15

https://wiki.centenary.org.au/x/5ysMCQ – Page 2 of 11

Input

Load the Spectre packages from library
 library('Spectre')

If successful If unsuccessful

> > Error in library("Spectre") : there is no package called
‘Spectre’

-

Load other required packages

Rather than having to load each individual package required one-by-one (library('plyr'), library('data.table') etc), we have
created two functions to simplify this process:

1. packages.check() will check if all the required packages are installed

2. package.load() will load all the required packages

Input

Check if the other required packages are installed
 Spectre::package.check()

Load the required packages
 Spectre::package.load()

As each package is loaded, you will see the following:

> Loading required package: PACKAGENAME

So far you should have the following code in your script:

https://wiki.centenary.org.au/x/5ysMCQ

? Spectre - basic tutorial Exported - 2024-04-15

https://wiki.centenary.org.au/x/5ysMCQ – Page 3 of 11

2. Set a working directory and create an output directory

Set a working directory

Normally this would be the location of the files you would like to analyse. For now, you can just this as your desktop or
similar. If you aren't sure how to search for directories, please have a look at our basic R tutorial.

Input

Set working directory
 setwd("/Users/thomasa/Desktop")

Check that it has been set correctly
 getwd()

Save the working directory as an object called 'Primary Directory'
 PrimaryDirectory <- getwd()

-

Create an output directory

Now we will create a directory where we can save the data and plots we will generate shortly.

Input

Create an output directory
 dir.create("Spectre-demo-output")

Go to that directory and save it as an object called 'Output Directory'

https://wiki.centenary.org.au/x/5ysMCQ
https://wiki.centenary.org.au/x/MIBfCQ

? Spectre - basic tutorial Exported - 2024-04-15

https://wiki.centenary.org.au/x/5ysMCQ – Page 4 of 11

 setwd("Spectre-demo-output")
 getwd()
 OutputDirectory <- getwd()

Finally, set the current working directory to 'PrimaryDirectory'
 setwd(PrimaryDirectory)

3. Load data

Load demo data

Normally, we load some CSV or FCS files from the disk, or a server into R for analysis. In this tutorial, we will skip this step,
and use an included demo dataset called 'demo.start'. This is a dataset of 120,000 cells, from 12 bone marrow samples: 6x
from mock-infected mice, and 6x West Nile virus (WNV)-infected mice. This amounts to 10,000 cells per sample. The data set
is structured as a large data.frame (a table) where each column is a cellular marker (e.g. FITC-CD4, etc), and each row is a cell.

Assign the included demo.start dataset to a new object we will call cell.dat.

Input

cell.dat <- Spectre::demo.asinh
cell.dat <- do.subsample(dat = cell.dat, targets = 10000)

-

You can review the structure of cell.dat by using str(). You can see the cell.dat is both a 'data.table' and a 'data.frame'.

Input

str(cell.dat)

Output

Classes ‘data.table’ and 'data.frame': 10000 obs. of 19 variables:
 $ FileName : chr "CNS_Mock_05.csv" "CNS_Mock_04.csv" "CNS_WNV_D7_02.csv" "CNS_WNV_D7_01.csv" ...
 $ NK11 : num 106 133 -178 889 237 ...
 $ CD3 : num 235.1 16.5 1603.4 441.9 143.3 ...
 $ CD45 : num 13575 9534 131586 99332 7806 ...
 $ Ly6G : num -179 -673 -6522 -3229 -605 ...

-

You can review the dimensionality of cell.dat by using dim(). The first entry returned is the number of rows, and the second
is the number of columns.

Input

dim(cell.dat)

Output

[1] 10000 19

https://wiki.centenary.org.au/x/5ysMCQ

? Spectre - basic tutorial Exported - 2024-04-15

https://wiki.centenary.org.au/x/5ysMCQ – Page 5 of 11

-

You can review the first 6 rows (out of the 10,000 rows) of cell.dat by using head(). Each column is a marker or cellular
feature, and each row is a cell.

Input

head(cell.dat)

-

Set some preferences

Input

Look at the names of the columns in the dataset, and take note of the number of each column
 as.matrix(names(cell.dat))

Output

> as.matrix(names(cell.dat))
 [,1]
 [1,] "FileName"
 [2,] "NK11"
 [3,] "CD3"
 [4,] "CD45"
 [5,] "Ly6G"
 [6,] "CD11b"
 [7,] "B220"
 [8,] "CD8a"
 [9,] "Ly6C"
[10,] "CD4"
[11,] "NK11_asinh"
[12,] "CD3_asinh"
[13,] "CD45_asinh"
[14,] "Ly6G_asinh"
[15,] "CD11b_asinh"
[16,] "B220_asinh"
[17,] "CD8a_asinh"
[18,] "Ly6C_asinh"

https://wiki.centenary.org.au/x/5ysMCQ

? Spectre - basic tutorial Exported - 2024-04-15

https://wiki.centenary.org.au/x/5ysMCQ – Page 6 of 11

[19,] "CD4_asinh"

-

Now we can choose the number of each column that we want to use for clustering, rather than having to write out each
column name. To do this, we can put the number of the columns in a vector (i.e. c(5,6,8) for columns 5, 6, and 8) within the
function below. You can replace these with the column numbers you would prefer to use (if you leave it as c(5,6,8), then the
columns used for clustering will be CD117, CD16/32, and CD115.

Input

Save the column names that you wish to use for clustering as an object called 'cluster.cols'.
 cluster.cols <- names(cell.dat)[c(11:19)]

-

We can check to make sure the names have been saved by running 'cluster.cols'.

Input

as.matrix(cluster.cols)

Output

> as.matrix(cluster.cols)
 [,1]
 [1,] "NK11_asinh"
 [2,] "CD3_asinh"
 [3,] "CD45_asinh"
 [4,] "Ly6G_asinh"
 [5,] "CD11b_asinh"
 [6,] "B220_asinh"
 [7,] "CD8a_asinh"
 [8,] "Ly6C_asinh"
 [9,] "CD4_asinh"

4. Perform clustering and dimensionality reduction

Now we can perform out clustering and dimensionality reduction. First we are going to cluster the data using FlowSOM.

Run clustering (FlowSOM)

We can use the function 'run.flowsom' to run FlowSOM on our 'cell.dat' dataset. For more information on performing
clustering in Spectre, see this page. There are two key arguments we need to provide to the function. The first is 'dat', or the
dataset to be used. The second is 'clust.cols', which is the columns to be used for clustering. In this case, we want to set dat
to cell.dat, and clust.cols to cluster.cols (which we just created).

Input

Run FlowSOM
 cell.dat <- Spectre::run.flowsom(dat = cell.dat,
 use.cols = cluster.cols)

https://wiki.centenary.org.au/x/5ysMCQ

? Spectre - basic tutorial Exported - 2024-04-15

https://wiki.centenary.org.au/x/5ysMCQ – Page 7 of 11

-

As the clustering is running, you will see the following red button show up on your RStudio window. That means that RStudio
is in the middle of processing something, and it won't respond to other commands while it is working.

-

While FlowSOM runs, you will progressively see the three following updates:

Creating SOM

Mapping data to SOM

Creating MST

-

Once FlowSOM has finished (and the red button has gone away) you can check the data to ensure the FlowSOM columns
have been added correctly.

Input

Check cell.dat to ensure FlowSOM data correctly attached -- by looking at the last two columns
 head(cell.dat)

-

At the end of what's returned, your should see the FlowSOM metaclusters and clusters added to the dataset

Output

 CD4_asinh FlowSOM_cluster FlowSOM_metacluster
1: 0.489656167 98 3
2: 0.947296284 120 3
3: -0.005035299 155 6
4: 1.588118198 1 1
5: 1.415293384 133 3
6: 1.189370553 10 1

-

Run UMAP

Now we can perform dimensionality reduction on our data for visualisation. For this we are going to use UMAP. For more
information on dimensionality reduction and cytometry data, please see this page. There are two key arguments we need to
provide to the function. The first is 'dat', or the dataset to be used. The second is 'use.cols', which is the columns to be used
for clustering. In this case, we want to set dat to cell.dat, and use.cols to cluster.cols (which we just created). UMAP by
default doesn't provide progress updates.

https://wiki.centenary.org.au/x/5ysMCQ

? Spectre - basic tutorial Exported - 2024-04-15

https://wiki.centenary.org.au/x/5ysMCQ – Page 8 of 11

Input

Run UMAP
 cell.dat <- Spectre::run.umap(dat = cell.dat, use.cols = cluster.cols)

It might take 1-2 minutes for UMAP to finish running.

-

Once UMAP has finished (and the red button has gone away) you can check the data to ensure the UMAP columns have
been added correctly.

Input

Check cell.dat to ensure the two new UMAP columns have been correctly attached.
 head(cell.dat)

-

Output

 CD4_asinh FlowSOM_cluster FlowSOM_metacluster UMAP_X UMAP_Y
1: 0.489656167 98 3 2.663033 4.7166290
2: 0.947296284 120 3 2.255309 3.8056978
3: -0.005035299 155 6 -4.758126 -0.6016916
4: 1.588118198 1 1 1.474979 -8.3206588
5: 1.415293384 133 3 1.202553 3.8960665
6: 1.189370553 10 1 3.525190 -5.4341879

-

Quick visual check

Now that we have run FlowSOM and UMAP, we want to do a quick visual check to make sure everything looks correct. To do
this we are going to create a 'factor' plot – a dot plot with our two UMAP columns as the X and Y axis, and the
FlowSOM_metacluster as the colour. We are going to add the labels of each cluster to the plot, and we will tell the
function not to save the image to disk. Running this command should generate a plot in the viewer window in RStudio.

Input

Make a 'factor' plot
 Spectre::make.colour.plot(dat = cell.dat,
 x.axis = "UMAP_X",
 y.axis = "UMAP_Y",
 col.axis = "FlowSOM_metacluster",
 col.type = 'factor',
 add.label = TRUE)

https://wiki.centenary.org.au/x/5ysMCQ

? Spectre - basic tutorial Exported - 2024-04-15

https://wiki.centenary.org.au/x/5ysMCQ – Page 9 of 11

-

5. Save data to disk

Now that we have added the cluster and UMAP information to our data, we should save the files and capture our progress.

First, let's set our working directory to 'OutputDirectory', so the data goes to the right place.

Input

Set working directory to OutputDirectory
 setwd(OutputDirectory)
 getwd()

-

https://wiki.centenary.org.au/x/5ysMCQ

? Spectre - basic tutorial Exported - 2024-04-15

https://wiki.centenary.org.au/x/5ysMCQ – Page 10 of 11

Input

Save CSV files
 Spectre::write.files(dat = cell.dat,
 file.prefix = "Sample_CSV_file",
 write.csv = TRUE,
 write.fcs = FALSE)

-

To further explore this data in FlowJo, let's also save some FCS files.

Input

Save FCS files
 Spectre::write.files(dat = cell.dat,
 file.prefix = "Sample_FCS_file",
 write.csv = FALSE,
 write.fcs = TRUE)

6. Make some plots

Now we should create some informative plots.

First we will make another factor plot of the FlowSOM metaclusters, but this time we will set 'save.to.disk' to TRUE. Once this
has been run, check your working directory for the image.

Input

Make a 'factor' plot coloured by cluster
 Spectre::make.colour.plot(dat = cell.dat,
 x.axis = "UMAP_X",
 y.axis = "UMAP_Y",
 col.axis = "FlowSOM_metacluster",
 col.type = 'factor',
 add.label = TRUE)

-

Next we'll make a colour plot showing the expression of a specific marker

Input

Make a colour plot for the expression level of CD11b
 Spectre::make.colour.plot(dat = cell.dat,
 x.axis = "UMAP_X",
 y.axis = "UMAP_Y",
 col.axis = "CD11b_asinh",
 add.label = TRUE)

https://wiki.centenary.org.au/x/5ysMCQ

? Spectre - basic tutorial Exported - 2024-04-15

https://wiki.centenary.org.au/x/5ysMCQ – Page 11 of 11

7. Annotate clusters, generate summary data, create heatmaps and graphs (with
stats)

From here, we may decide to annotate our clusters (e.g. clusters 1 and 5 become "B cells", etc), create some summary
statistics (proportion of each population, total cells of each population per sample, MFI of each marker on each population,
etc), and then great some graphs (with statistics) and heatmaps. More information on these processes can be found on the
Spectre Home Page.

Where to next?

Now that you've completed the Spectre tutorial, have a look at our workflow types on the Spectre Home Page.

https://wiki.centenary.org.au/x/5ysMCQ
https://immunedynamics.github.io/spectre/
https://immunedynamics.github.io/spectre/

	1. Setup tutorial script and dataset
	2. Set a working directory and create an output directory
	3. Load data
	4. Perform clustering and dimensionality reduction
	5. Save data to disk
	6. Make some plots
	7. Annotate clusters, generate summary data, create heatmaps and graphs (with stats)
	Where to next?

